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Humans, like many other species, employ three fundamental

forms of strategies to navigate: allocentric, egocentric, and

beacon. Here, we review each of these different forms of

navigation with a particular focus on how our high-resolution

visual system contributes to their unique properties. We also

consider how we might employ allocentric and egocentric

representations, in particular, across different spatial

dimensions, such as 1-D versus 2-D. Our high acuity visual

system also leads to important considerations regarding the

scale of space we are navigating (e.g. smaller, room-sized

‘vista’ spaces or larger city-sized ‘environmental’ spaces). We

conclude that a hallmark of human spatial navigation is our

ability to employ these representations systems in a parallel

and flexible manner, which differ both as a function of

dimension and spatial scale.

Addresses
1 Center for Neuroscience, Department of Psychology, University of

California, Davis, 1544 Newton Ct., Davis, CA 95616, United States
2 Center for Mind and Brain, Department of Psychology, 267 Cousteau

Place, Davis, CA 95618, United States

Corresponding author: Ekstrom, Arne D (adekstrom@ucdavis.edu)

Current Opinion in Behavioral Sciences 2017, 17:84–89

This review comes from a themed issue on Memory in time and

space

Edited by Lila Davachi and Neil Burgess

http://dx.doi.org/10.1016/j.cobeha.2017.06.005

2352-1546/# 2017 Elsevier Ltd. All rights reserved.

Introduction
Much of our knowledge about navigation, particularly its

neural basis, derives from studies in rodents [1]. How

we navigate, however, differs fundamentally from these

mammals in that we are highly visual creatures, and

vision, under normal situations, forms a critical foundation

for how we represent space compared to rodents [2�]. At

the same time, like rodents, we possess many similarities

in terms of the basic strategies and access to similar forms

of representations that we employ to navigate. In this

review, we will focus on the cognitive and behavioral basis

of human spatial navigation. We will base much of our

discussion on the idea that, like the rodent, we use three

fundamental strategies to get to our goal: allocentric,
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egocentric, and beacon. Because of the advantages that

our high acuity visual system confers to navigating, we

will also consider how this impacts our ability to represent

different dimensions (1D–3D) and scales of space, such as

room versus city-sized environments.

Tolman first argued for the importance of an allocentric

representation to navigation in the rodent in the context

of the cognitive map [3]. As elaborated on later by many

others [4–8], an allocentric representation is referenced

outside of one’s current body position, most often to

multiple landmarks external to the navigator (Figure 1a).

In 2-D space (e.g. Figure 2), mathematically at least, this

involves a minimum of three such landmarks because

these are needed to define a plane in X–Y space (alterna-

tively, a boundary and landmark will also suffice because a

line and a point can also define a 2-D plane) [7]. The

‘purest’ form of an allocentric representation emerges

when we draw a cartographic map of an environment

because these are not possible without detailed knowl-

edge of the relative directions and distances of stationary

landmarks [9–10,11,12�,13]. Other tasks, such as the

widely used judgments of relative direction (JRD) task

[12�,14,15,16��], also involve some use of an allocentric

representation because the task requires referencing to the

positions of landmarks relative to each other [17]. Specifi-

cally, in this task, participants imagine themselves standing

at one location, facing a second, and point to a third

location. Thus, two primary assays to determine whether

participants employ allocentric coordinates are map draw-

ing and the JRD task.

Landmarks themselves, however, are not necessary for an

allocentric representation. The surrounding spatial ge-

ometry, like a square or rectangle shape defined by the

boundaries of an environment, can also serve as a power-

ful cue for organizing externally referenced knowledge

[15,18–21]. For example, when participants perform the

JRD task, they tend to point more accurately when they

are aligned (parallel) with the major axis of the surround-

ing environmental boundaries, like a rectangle, compared

to when they are misaligned with these axes. Numerous

studies have replicated this advantage in pointing accu-

racy when aligned with the spatial boundaries, which

have held across a variety of testing conditions [15,18–
23]. Thus, while past theoretical proposals have concep-

tualized allocentric representations as largely dependent

on multiple landmarks [4,7], decades of work in human

spatial navigation have demonstrated that the surround-

ing spatial geometry defined by environment boundaries
www.sciencedirect.com
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Glossary

Allocentric: A representation of a spatial environment referenced to

an external coordinate system that is not dependent on the view or

direction navigated.

Cognitive map: A representation of a spatial environment that

contains information about metric and directional relationships of

objects in that environment. By definition, these representations are

allocentric.

Egocentric: A representation of a spatial environment tied to a self or

body centered coordinate system.

Path-integration: Computation of the optimal, or shortest, path to a

location based on previous paths. Based primarily on egocentric

representation.
can also serve as a powerful cue for organizing an allo-

centric coordinate system.

Another form of spatial representation, arguably more

commonly used in everyday situations like reaching for

an object or remembering where a chair is in the room, is

the egocentric representation [7]. Egocentric representa-

tions involve reference to our current body position,

such as that a chair is located 30 ft in front of us about

10 degrees off from our current facing direction

(Figure 1b). As suggested in numerous studies of human

spatial cognition [16��,24,25], we often employ egocentric

forms of representation for avoiding collisions with

objects and navigating our immediate, peripersonal space.
Figure 1

(a) Allocentric (b) 

2)

1)

X

(a) Allocentric navigation: The navigator treats the location of the target (‘x’)

The coordinates in allocentric space are constant as long as the landmarks

location (‘x’) change continuously with the displacement of navigator from lo

continuously as a function of displacement. c. Beacon/response navigation:

Finding the target is simply based on using its size on the retina to gage th

retrieve a spatial representation or coordinate system when using beacon n
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Consistent with this notion, several studies suggest

that egocentric representations tend to be high-resolution

visual ‘snapshots’ linked to our current bearing [16��,24].

By taking a series of these high-resolution, static, body-

referenced snap-shots, we can integrate them together to

form a single coherent egocentric representation linked to

our current location in space [26�] (Figure 1b). Each of

these representations can then be updated as we move

throughout an environment (Figure 1b), forming the basis

for a system of a vector addition called path integration

[17,27]. However, during disorientation [16��,24,28], or

moving in large scale environments [29], these represen-

tations degrade, necessitating other forms of representa-

tion, like an allocentric one.

What conditions emphasize egocentric over allocentric

representations? To what extent can the two develop in

parallel [30]? In one particular study, Zhang et al. com-

pared performance on the JRD task after studying a map

and navigating a route with performance on the scene and

orientation dependent pointing task (SOP task), com-

monly used to assay egocentric forms of representation

[12�]. In this task, all visual cues (except the target

locations) remain and participants use these orienting

cues to point to the hidden location (i.e. ‘Point to the

Supermarket’). Studying a map resulted in rapid, non-

linear improvements in JRD pointing accuracy but slow
Egocentric Beacon(c)
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 as a coordinate on a 2-D plane defined by three landmarks (stores).

 remain stable. (b) Egocentric navigation: The coordinates of the target

cation (1) to (2). In other words, egocentric coordinates change

 The navigator uses the visible locations of stores to find the target.

e relative distance of the target. Thus, it is not necessary to encode or

avigation.
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Figure 2
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(a) Spatial representation in two dimensions (ignore vertical [Z] plane).

(b) Spatial representation in one dimension. When used to code time,

we refer to this as the mental timeline.
modest improvements in SOP accuracy. In contrast, nav-

igating a route resulted in greater improvements in SOP

accuracy than JRD accuracy. These findings suggest that

firstly, map learning provides more immediate improve-

ments in allocentric knowledge; secondly, route learning

provides more immediate improvements in egocentric

knowledge. These findings support the idea that the two

forms of representations are partially dissociable in

humans, but suggest that both develop in parallel during

learning. See also [16��,31–33] for similar conclusions.

A third navigation strategy is often called a beacon or

response strategy [34–37], which involves navigating to a

single object, or series of objects, such as salient land-

marks or objects in an environment. This type of naviga-

tion does not necessitate a representation of a coordinate

space and only requires one’s memory for the object itself

and the ability to discriminate it from other features and

objects. Navigation thus involves moving either closer to,

or further from, a specific object, such that its position gets

bigger or smaller on the retina, thus providing a basic cue

for getting to the object (sometimes termed a ‘response

strategy’ [37]). Beacon navigation, when combined with

egocentric codes like ‘right and left,’ forms the basis of

how we navigate with mobile devices like GPS on our

phone. This is because GPS instructions reduce the

navigator’s job to searching for a specific target paired

with a response (e.g. ‘At first street, take a right’).

One important question then regards the optimal means

for acquiring information about locations within our sur-

rounding spatial environment. Both route and map learn-

ing, as discussed above, contribute to egocentric and

allocentric knowledge, although route knowledge ac-

quired under real-world, rather than virtual navigation,

is more precise and accurate [38]. But what about GPS? In

one study, participants navigated a real world environ-

ment either by studying a map first, being guided by an

experimenter and then navigating the route, or navigating
Current Opinion in Behavioral Sciences 2017, 17:84–89 
it with GPS [39��]. GPS users tended to make more errors

when having to later navigate without the device, result-

ing in greater errors in judgments of direction and in

map drawing compared to those with direct navigation

experience. These results are consistent with past find-

ings suggesting that beacon strategies lead to limited

recruitment of important brain structures to navigation-

related memory, like the hippocampus [35,37,40]. An

important question, though, not answered in this research

regards the extent to which participants nonetheless

can acquire some allocentric knowledge under these

otherwise impoverished learning conditions (for example,

see: [41]).

Spatial dimensions: not all are created equal
So far, we have considered representations primarily in

two dimensions, although it is useful to consider the

simpler case of one dimension (the reader is referred

elsewhere to papers considering the vertical [z] dimension

[42]). If we consider a simple line, we can think of an

allocentric representation involving two landmarks (where

are we relative to two points on the line?). An egocentric

representation then involves our body position along that

line. This situation may arise during everyday navigation,

for example, when walking down a hallway or using distal

landmarks (mountains) to walk a straight path to a goal

[29]. In this way, by reducing the dimensionality of the

space we traverse, either physically (hallways) or mentally

(imagining walking in a straight line in a 2-D environ-

ment), we can employ a simpler egocentric or allocentric

representation because it involves the need for fewer

landmarks and coordinates.

One particularly interesting case of a 1-D spatial repre-

sentation involves the so-called ‘mental number line,’

which may form one basis for how we represent time

[43,44]. These 1-D spatial representations of time could

either be egocentric or allocentric, and their underlying

spatial nature remains unclear. In one particularly

thoughtful test of this idea, Frassinetti et al. examined

whether inducing an egocentric bias during a prismatic

adaption could also induce temporal distortions [45�].
The adaptation process, which involves having partici-

pants point while wearing goggles that shifted their view

to the right or left, results in a post-adaptation egocentric

bias in participant pointing error. Moreover, it was ob-

served that time perception was also altered. A leftward

after effect facilitated in an underestimation and right-

ward after effect facilitated an overestimation of temporal

duration. These findings are consistent with the idea that

the mental number line flows from left to right [43,44],

suggesting that their findings regarding the 1-D egocen-

tric spatial representations might generalize to other

temporal coding schemes. Similar results have been

reported for longer duration autobiographical mental

time travel [46] and duration judgment of tones [47].

These findings, however, are inconsistent with other data
www.sciencedirect.com
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suggesting dissociable neural representations for tempo-

ral order, time duration, and space [48–51]. It therefore

remains to be determined whether 1-D spatial represen-

tations underlie all forms of temporal estimation or only in

specific instances, and how these might differ for 1-D

allocentric spatial representations.

Scales of space: vista versus environmental
space
Most research regarding how we structure spatial knowl-

edge derives from studies conducted in small-scale, room-

sized environments, termed ‘vista space.’ One limitation

with this work, however, is that most relevant information

in ‘vista space’ can be acquired from a single viewpoint

[52��,53], at least by humans [2�,17]. In contrast, large-

scale space, termed ‘environmental space’, would appear

to require integration of information across multiple

trajectories and viewpoints experienced at different

time points because not all of it can be acquired from a

single viewpoint [9,12�,54] (Figure 3). Consistent with

this notion, some recent studies suggest potential differ-

ences in how we represent different scales of space.

As one example of how representations differ as a func-

tion of spatial scale, egocentric and allocentric represen-

tations form rapidly in small-scale space while those in

large-scale space typically evolve dynamically over time

[12�,31]. Additionally, how we use spatial boundaries to

anchor our representations also differs as a function of

spatial scale. In a virtual reality study [55��], Meilinger

et al. compared two navigation conditions of an environ-

ment. In one condition, the corridors prevented partici-

pants from seeing the whole space at once (environmental

space) while in the other, participants could see the entire
Figure 3

(a) (b)
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(a) An example of a vista space. Here, all landmarks are visible from a

single viewpoint. (b) An example of an environmental space. Here,

navigation is required to view and encode all the landmarks.
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space from a single viewpoint (vista space, Figure 3). The

authors found that the distance traveled and the sequence

of objects influenced pointing error in environmental

space but not in vista space. This finding is consistent

with the idea that environmental space involves a time-

dependent conversion of egocentric into allocentric coor-

dinates by integrating over multiple egocentric reference

frames (see Figure 1) [9,12�,56]. Additionally, these find-

ings suggest that participants treat environmental space as

compartmentalized micro-environments, consistent with

past studies suggesting that spatial representations can

often be learned in a hierarchical fashion for neighboring

spaces [57,58]. These findings again emphasize the need

for considering the time-dependent integration of repre-

sentations in environmental space, suggesting its funda-

mental difference from vista space.

Summary
While much of our knowledge about spatial navigation

derives from other species, understanding navigation in

humans is an important research endeavor in its own right.

Like rodents, highly studied mammals in the context

of navigation, we also employ allocentric, egocentric, and

beacon strategies to navigate. Our comparatively superior

visual system provides for high-resolution visual forms

of these representations, particularly transient egocentric

representations. An important consideration, then, is how

different scales of space interact with different forms of

spatial representation. An emerging picture in the human

spatial navigation literature is that not all forms of space

are created equally, with vista space relying heavily,

although not exclusively, on high-resolution egocentric

‘snapshots’ and environmental space involving more

gradual acquisition of stable allocentric representations.
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